

TRANSITIONING TO A SAFE AND SECURE ZUNAL ARCHITECTURE

S32G Vehicle Network Processor as the Foundation

Automotive E/E Architecture Evolution Paths: Logical and Physical

Potential Automotive OEM Architecture Migration Paths -> Logical + Physical

OVERVIEW

- We're tasked with transitioning legacy to Zonal E/E Architecture
 - GuardKnox will assume the role of OEM engineering
- We'll have a workshop with suppliers
 - NXP and Green Hills Software

APPROACH

- WHY ... ?
- WHAT ... ?
- WHERE ... ?
- HOW ... ?
- WHEN ... ?

PROBLEMS & CHALLENGES

SCALABILITY WALL

- Too many ECUs
- Too much wiring
- Limited network configurations
- Coupled functionality

INDUSTRY LANDSCAPE

- New propulsion
- New consumer
- New competitors
- Upcoming regulation

THE AUTOMOTIVE INDUSTRY IS IN THE MIDST OF A PARADIGM SHIFT

ETHERNET BACKBONE - TOPOLOGY OPTIONS

ZONAL ARCHITECTURE DEVICE CLASSES

GOALS

END UP WITH A ZONAL ARCHITECTURE

REDUCE COSTS AS FAST AS POSSIBLE

BACKWARD AND FORWARD COMPATIBLE

WHICH DEVICE?

VEHICLE SERVER - ECU REDUCTION

- Transition to server(s)
- Network agnostic
- Agnostic to physical layout
- Cost reduction for any car
- Scales up / down
- Major impact on cost (engineering)

MEETS OUR GOALS

VS.

ZONAL GATEWAY - WIRING REDUCTION

- Introduce new gateway(s)
- Changes to backbone
- Depended on physical layout
- Cost reduction for wiring burdened car
- Unclear scaling
- Some impact on cost (material and labour)

WE'LL KEEP THAT IN MIND

OBJECTIVES

CONSOLIDATED PLATFORM

- Function = software package
- Stop ordering individual ECUs

DE-FRAGMENT ECO-SYSTEM

- Runtime environments and versions
- Shorten development, certification and integration times

FUTURE PROOF

- Single design fits many use cases
- Incremental functionality development

COMMONALITY

- Powertrain = μ C + Interfaces
- Cockpit = μP + μC + Interfaces + GPU
- Connectivity = μ P + Interfaces + Wireless
- Body = μ P + μ C + Interfaces
- Autonomy / ADAS = μ P + μ C + Interfaces + Vision / GPU
- Battery = μC + Interfaces + PLC / Wireless
- Gateway = μ P + μ C + Interfaces
- Legacy = μ P / μ C + Interfaces + ASICs

SERVER =
$$\mu$$
P + μ C + Interfaces

CONSTRAINTS

- Replace an existing ECU
- Biggest network outreach
- Place to scale

"CENTRAL" EXISTING ECU → SERVER PLATFORM

GATEWAY ARCHITECTURE

BLOCK DIAGRAM

NETWORK TOPOLOGY (STAR-ISH)

GATEWAY TO ZONAL

DOMAIN CONTROLLER ARCHITECTURE

DOMAIN TO ZONAL

VEHICLE SERVER "TEMPLATE"

- Consolidated
 - Single SoC
 - Software modules
- Mixed criticality
 - Safety
 - Security
- Scalable
 - Clustering
 - Device family
 - Runtime environments
- Secure (inclusive safety)
 - Defense in depth
 - Logical / physical isolation

REQUIREMENTS

Micro-processor (application)

Micro-controller (real-time)

Up to ASIL-D (applications are unknown)

All automotive interfaces (legacy and Ethernet)

Multiple runtime environments (hypervisor / processors)

Scalable platform (hardware family variants)

Strong isolation (safety and security)

NO APPLCATION RE-DEVELOPMENT!

S32G is a New Type of Automotive Processor: Vehicle Network Processor

PROCESSING

Lockstep Microcontrollers

Cluster Lockstep Microprocessors

Automotive Networks Acceleration

Ethernet Packet Acceleration

SAFETY & SECURITY

ASIL D Functional Safety Support Advanced Hardware Security Engine

NETWORKING

20 x CAN/CAN FD Interfaces
LIN and FlexRay™ Interfaces
4 x Gigabit Ethernet Interfaces
PCI Express Gen 3 Interfaces

APPLICATIONS

Service-oriented Gateway

Domain Controller

ADAS/AD Safety Controller

Vehicle Compute / Zonal Gateways

S32G Processor Supports Vehicle Architecture Transformation

LEGACY APPROACH | FLAT

UNFIT TO FUTURE MOBILITY – SECURITY AND SCALABILITY ISSUES

Low bandwidth, one MCU per application

LOGICAL RESTRUCTURE | DOMAINS

ENABLING SCALABLE GROWTH, CONSOLIDATION AND NEW FEATURES LIKE AUTONOMOUS VEHICLE

High bandwidth network

Gateway key to communication between domains

Domain Controllers for local networking and ECU consolidation

PHYSICAL RESTRUCTURE | ZONES

CENTRAL

BRAIN(S)

REDUCING WIRING COMPLEXING AND ENABLING THE USER-DEFINED CAR

Domains virtualized by SW – enabling high flexibility Easy enable/disable or update functions

S32G274A: ASIL D Vehicle Network Processor

MCUs for realtime processing MPUs for apps and services

On-the-Fly
Secure External
Flash Memory

Functional Safety Design

Embedded Hardware Security with PKI Support

Automotive
Networks
(CAN/LIN/FlexRay)
Hardware
Acceleration

Automotive
Gigabit Ethernet
Hardware
Acceleration

System Peripherals and Interfaces including 2x2 PCI 3.0

S32G Scalable Family Applications*

Advanced Service-oriented Gateway, Connected Gateway, AD Domain Controller

Maximum processing performance for services, domain control and communications stacks ◆ Maximum ASIL D performance

Basic Service-oriented Gateway, Domain Controller

Maximum real-time performance ◆ Application processing for services and domain control

Ethernet Gateway, Management Controller

Application processing for management and control ♦ Some real-time processing for automotive networking

Low/Mid-range Gateway, Zonal I/O Controller, Safety Controller

Maximum real-time performance for automotive networking and safety control ◆ No applications processing

^{*}These applications are only for guidance and can vary based on customer requirements.

NXP S32G Reference Design Board Accelerates Development

Carmakers

Proof of concept

Benchmarking

Vehicle data insights

New services deployment

Application Developers

Innovation platform
Software development
Test and validation
Demo showcase

Cloud & Service Providers

Symbiotic compute
Over-the-Air (OTA) updates
Machine learning deployment
Edge service deployment

Accelerating Transformation Across the Automotive Ecosystem

Mixed-Criticality as an Enabler

- ☐ The main driver is the application landscape
 - Domain controllers & vehicle computers
 - ADAS/AD Applications
 - Gateways
 - Modular software deployment
 - 'App-store' like software distribution
- □ Heterogeneous computing platforms to the rescue
 - Require vast middleware packages
 - Enable rich connectivity functions
- Mixed criticality on a single platform is the key

Freedom-From-Interference

- □ A failure in an element is caused by a fault
- Faults can have diverse root causes
 - Hardware faults bit flips, erratas, etc.
 - Software faults bugs
 - Malicious attacks
- FFI prevents failures from propagating (cascading)
 - Relevant for the safety functions of an ECU
- → FFI is critical for separating mixed-criticality systems
 - Prevents failures to cascade from "lower" ASIL to "higher" ASIL
 - Prevents failures to cascade within the same ASIL domain

Mixed-Criticality in Action

- □ A pre-certified secure microkernel
 - Minimal codebase, low footprint, efficient hardware resource usage
 - Trusted secure base for separation
- Least privilege model provides "containerization"
 - Additionally enhanced by virtualization capabilities

© 2020 Green Hills Software Slide 31

SOFTWARE STACK LAYOUT

- App domain
 - Quad A53
 - Split/lock
 - RTOS
 - Hypervisor
- RT domain
 - Triple M7
 - Lockstep
 - RTOS
 - Bare metal
- Accelerators
 - Network
 - Security

FREEDOM TO EVOLVE

HARDWARE ENFORCED ISOLATION

- App domain → MMU
- RT domain → MPU
- Interconnect → XRDC

CONSOLIDATION: USE CASE

- Runtime
 - AUTOSAR Classic
 - AUTOSAR Adaptive
 - Linux
 - Bare metal
- Vendors
 - AUTOSAR Classic
 - ECU suppliers
- Criticalities
 - ASIL-D
 - ASIL-B
 - QM
 - Unspecified

Legacy ECUs

AUTOSAR Classic A (ASIL-D) AUTOSAR Classic A (ASIL-B) AUTOSAR Classic B (ASIL-B)

Linux + AUTOSAR Adaptive (QM)

Bare metal (?)

USE CASE IMPLEMENTATION A

- App domain
 - Quad A53
 - Split/lock
 - RTOS
 - Hypervisor
- RT domain
 - Triple M7
 - Lockstep
 - RTOS
 - Bare metal
- Accelerators
 - Network
 - Security

USE CASE IMPLEMENTATION B

- App domain
 - Dual A53
 - Split/lock
 - RTOS
 - Hypervisor
- RT domain
 - Single M7
 - Lockstep
 - RTOS
- Accelerators
 - Network
 - Security

ZONAL GATEWAY

- Re-use gateway + server design
- Optimize case by case

UNIFORMITY

- Maximize software re-use
 - MCAL / BSP
 - Applications
 - Guest OS / middleware / eco-system
- Hardware scaling up / down
 - Pin compatibility
 - Vendor roadmap
 - Product / chip family and variants
- Interchangeable parts
 - May not need to maintain old ECUs
 - May not need to stock up parts for over a decade
 - Used car factory options "retrofitting"
- Vendor complementary peripherals
 - Design optimized PMIC, Ethernet switches, transceivers...

CHALLENGES AND PITFALLS

- Cost reduction
 - Across entire E/E
 - Vehicle lifecycle
- Not a traditional supplier engagement
 - Requires expertise no general solution
 - Can't spec-out "make me have zonal"
- DMIPS performance rating
 - Accelerators and offloaders are left out
 - Today mostly a compiler optimizer benchmark

BGUARDKN□X ZONAL E/E ARCHITECTURE DEMO RACK SET-UP

PARTNER MAPPING

THANK YOU

Idan Nadav

Idan@guardknox.com

http://www.guardknox.com

Nikola Velinov

Nvelinov@ghs.com

http://www.ghs.com

Brian Carlson

Brian.carslon@nxp.com

http://www.nxp.com

